If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+12n=48
We move all terms to the left:
6n^2+12n-(48)=0
a = 6; b = 12; c = -48;
Δ = b2-4ac
Δ = 122-4·6·(-48)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-36}{2*6}=\frac{-48}{12} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+36}{2*6}=\frac{24}{12} =2 $
| 5t+6+90+49=180 | | x=80+x | | 1+11x=45 | | -w=26 | | -4p=84 | | 4v+3+90+5v+6=180 | | 15.6=4n | | 6(-3r+3)=126 | | 6(-3r+3)=127 | | 2(-x-6)=43(x+5) | | 2x+8=63+7=180 | | 0+12=3p | | 2x+8=63+7=80 | | 15x3-(20x2)=0 | | 2x^2+(-14x)+1=0 | | 10x+x²=128 | | (2x^2+(-14x)+1=0 | | 15x3=20x2 | | 19=3x-17 | | 2(2x+9=18 | | 2(2x+9=-18 | | 7x-3x=26 | | 7v+19=2(10v+3) | | 7v+19=20v+3 | | 1−5 | | x-2.9=7.4 | | 5x-20=2x+50 | | 8+5^x-3=133 | | 25+b11/12=47 | | 1.2x-5.12=1.6+(0.1x) | | 9(x-2)=-2x=7x+5 | | 2x^2+10=172 |